TRANSITION TO CHAOS IN A CURVED CARBON NANOTUBE UNDER HARMONIC EXCITATION
Abstract
The chaotic behavior of a carbon nanotube with waviness along its axis is investigated. The equation of motion involves a quadratic and cubic terms due to the curved geometry and the mid-plane stretching. Melnikov method is applied for the system, and Melnikov criterion for global homoclinic bifurcations is obtained analytically. The numerical solution of the system using a fourth-order-Runge–Kutta method confirms the analytical predictions and shows that the transition from regular to chaotic motion is often associated with increasing the energy of an oscillator. Moreover, a detailed numerical study of the periodic attractor in the period window is also carried out.
You currently do not have access to the full text article. |
---|