World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Microstructure and magnetostrictive properties of epoxy-bonded Tb1-xNdx(Fe0.8Co0.2)1.93 (0.20 ≤ x ≤ 0.75) composites

    https://doi.org/10.1142/S0217979214501598Cited by:2 (Source: Crossref)

    An epoxy-resin bonding route was used to produce composite rods of the highly magnetostrictive alloys Tb1-xNdx(Fe0.8Co0.2)1.93 (0.20 ≤ x ≤ 0.75). The structure, spin configuration, magnetostriction and particle size are investigated by means of X-ray diffraction (XRD), a standard strain technique and scanning electron microscope (SEM). The epoxy-bonded 0–3 type and pseudo 1–3 type composites are successfully fabricated, respectively. XRD analysis shows that the easy magnetization direction (EMD) for the alloy of x = 0.20 lies along 〈111〉 axis. The magnetic curing field makes the particles align as a particulate chain and also causes the particles rotating along its EMD direction. The pseudo 1–3 type epoxy-bonded composite has a larger magnetostriction than that of the 0–3 type composite, which can be attributed to the larger magnetostriction coefficient λ111, EMD lying along 〈111〉 direction, the 〈111〉-textured orientation and the chain structure. A large saturation magnetostriction (λ0S ~ 570 ppm) is achieved for the 1–3 type epoxy/Tb0.35Nd0.65(Fe0.8Co0.2)1.93 composite (about 150–250 μm, 10 kOe), which approaches 70% of its monolithic alloy. Furthermore, it only contains 27 vol.% alloy particles in the insulating epoxy matrix and performs a low magnetic anisotropy, which could make it technologically interesting for the field of Nd-containing magnetostrictive materials.

    PACS: 75.80.+q, 74.25.Ha, 75.30.Gw
    You currently do not have access to the full text article.

    Recommend the journal to your library today!