World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE — Quantum Plasmonics (edited by Christos Tserkezis)No Access

On the origin of nonlocal damping in plasmonic monomers and dimers

    https://doi.org/10.1142/S0217979217400057Cited by:26 (Source: Crossref)

    The origin and importance of nonlocal damping is discussed through simulations with the generalized nonlocal optical response (GNOR) theory, in conjunction with time-dependent density functional theory (TDDFT) calculations and equivalent circuit modeling, for some of the most typical plasmonic architectures: metal–dielectric interfaces, metal–dielectric–metal gaps, spherical nanoparticles and nanoparticle dimers. It is shown that diffusive damping, as introduced by the convective–diffusive GNOR theory, describes well the enhanced losses and plasmon broadening predicted by ab initio calculations in few-nm particles or few-to-sub-nm gaps. Through the evaluation of a local effective dielectric function, it is shown that absorptive losses appear dominantly close to the metal surface, in agreement with TDDFT and the mechanism of Landau damping due to generation of electron–hole pairs near the interface. Diffusive nonlocal theories provide therefore an efficient means to tackle plasmon damping when electron tunneling can be safely disregarded, without the need to resort to more accurate, but time-consuming fully quantum-mechanical studies.

    PACS: 78.67.Bf, 73.20.Mf, 72.10.Fk
    You currently do not have access to the full text article.

    Recommend the journal to your library today!