World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NONLOCAL LOW-RANK REGULARIZATION METHOD FOR FRACTAL IMAGE CODING

    https://doi.org/10.1142/S0218348X21501255Cited by:8 (Source: Crossref)

    Fractal coding has been widely used as an image compression technique in many image processing problems in the past few decades. On the other hand side, most of the natural images have the characteristic of nonlocal self-similarity that motivates low-rank representations of them. We would employ both the fractal image coding and the nonlocal self-similarity priors to achieve image compression in image denoising problems. Specifically, we propose a new image denoising model consisting of three terms: a patch-based nonlocal low-rank prior, a data-fidelity term describing the closeness of the underlying image to the given noisy image, and a quadratic term measuring the closeness of the underlying image to a fractal image. Numerical results demonstrate the superior performance of the proposed model in terms of peak-signal-to-noise ratio, structural similarity index and mean absolute error.