World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Carrier effective masses and thermoelectric properties of novel Ag3AuSe2 and Ag3AuTe2 compounds

    https://doi.org/10.1142/S0217979217502538Cited by:9 (Source: Crossref)

    The carrier effective masses as well as thermoelectric and electronic properties of ternary chalcogenides compounds of the form Ag3AuX2(X = Se, Te) have been studied using first-principles method based on density functional theory. For the treatment of exchange-correlation energy, we have used the generalized gradient approximation (GGA) by Perdew, Burke and Ernzerhof (PBE-GGA) and Wu–Cohen (WU-GGA) schemes. Both the compounds (Ag3AuSe2 and Ag3AuTe2) are direct bandgap semiconductors. The p-type nature of these compounds is confirmed by the effective mass calculations. In thermoelectric measurements, different parameters (electrical conductivity, carrier concentration, Seebeck coefficient, thermal conductivity and thermoelectric power) are calculated. It is found that all these parameters increase with the increase in temperature for both the compounds. The obtained results for these compounds such as the direct bandgap nature and their high value of the thermoelectric power make them valuable candidates for different device applications.

    PACS: 84.60.Rb, 71.18.+y, 74.70.Xa
    You currently do not have access to the full text article.

    Recommend the journal to your library today!