User click fraud detection method based on Top-Rank-k frequent pattern mining
Abstract
A user click fraud detection method based on Top-Rank-k frequent pattern mining algorithm is presented to solve the click fraud problem appearing in current online advertising. Firstly, this method combines the click frequency of event samples, calculates the real evaluation score of click stream, and the click stream density function and evaluation score expression under multi-dimensional variables, and further obtains the time complexity of the next user’s click fraud process. Secondly, according to the Top-Rank-k frequent pattern, the process of click fraud detection algorithm is designed, and the click fraud user is analyzed and obtained. The results show that this method has good efficiency and correctness, and is superior to other similar algorithms.
You currently do not have access to the full text article. |
---|