World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Time series classification based on triadic time series motifs

    https://doi.org/10.1142/S0217979219502370Cited by:4 (Source: Crossref)

    It is of great significance to identify the characteristics of time series to quantify their similarity and classify different classes of time series. We define six types of triadic time-series motifs and investigate the motif occurrence profiles extracted from the time series. Based on triadic time series motif profiles, we further propose to estimate the similarity coefficients between different time series and classify these time series with high accuracy. We validate the method with time series generated from nonlinear dynamic systems (logistic map, chaotic logistic map, chaotic Henon map, chaotic Ikeda map, hyperchaotic generalized Henon map and hyperchaotic folded-tower map) and retrieved from the UCR Time Series Classification Archive. Our analysis shows that the proposed triadic time series motif analysis performs better than the classic dynamic time wrapping method in classifying time series for certain datasets investigated in this work.

    PACS: 05.45.Tp
    You currently do not have access to the full text article.

    Recommend the journal to your library today!