World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Quantum coherence versus nonclassical correlations in optomechanics

    https://doi.org/10.1142/S0217979219503430Cited by:10 (Source: Crossref)

    Coherence arises from the superposition principle, where it plays a central role in quantum mechanics. In Phys. Rev. Lett.114, 210401 (2015), it has been shown that the freezing phenomenon of quantum correlations beyond entanglement is intimately related to the freezing of quantum coherence (QC). In this paper, we compare the behavior of entanglement and quantum discord with quantum coherence in two different subsystems (optical and mechanical). We use respectively the entanglement of formation (EoF) and the Gaussian quantum discord (GQD) to quantify entanglement and quantum discord. Under thermal noise and optomechanical coupling effects, we show that EoF, GQD and QC behave in the same way. Remarkably, when entanglement vanishes, GQD and QC remain almost unaffected by thermal noise, keeping nonzero values even for high-temperature, which is in concordance with Phys. Rev. Lett.114, 210401 (2015). Also, we find that the coherence associated with the optical subsystem is more robust — against thermal noise — than those of the mechanical subsystem. Our results confirm that optomechanical cavities constitute a powerful resource of QC.

    PACS: 03.67.-a, 03.65.Ud, 03.65.-w, 42.50.-p
    You currently do not have access to the full text article.

    Recommend the journal to your library today!