Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Laser cladding of Ni60+174PH composite for a cracking-free and corrision resistive coating

    https://doi.org/10.1142/S0217979220400421Cited by:9 (Source: Crossref)
    This article is part of the issue:

    In order to obtain a laser-cladded coating with no cracking and good corrosion resistance, this paper investigated laser cladding of a mixture of 17-4PH stainless steel and Ni60 powders on ASTM 1045 steel substrate. The surface cracking, mechanical properties and corrosion resistance of the coatings were assessed by various characterization methods. The experimental results demonstrated that a crack-free coating can be obtained by adding 30% (or above) 17-4PH stainless steel into Ni60 alloy. The mechanical properties of the coatings were determined by adding 17-4PH, but stabilized at about 79% of pure Ni60 alloy, which is acceptable considering the benefit of elimination of surface cracking. Decrease in the mechanical properties were caused by the dilution of the strengthening elements and reduction of population of hard phases. Composite coating having 30% of 17-4PH also exhibited the smallest corrosion current, lowest corrosion potential and slowest corrosion rate, and therefore the best corrosion resistance.

    PACS: 42.62.-b
    You currently do not have access to the full text article.

    Recommend the journal to your library today!