World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Spectroscopic ellipsometric investigation of optical parameters of oil-water thin multiple systems

    https://doi.org/10.1142/S0217979220500587Cited by:4 (Source: Crossref)

    To determine the optical parameters of crude oil and seawater systems, we carried out spectral investigations using the ellipsometry method, which is a highly sensitive and accurate optical method for studying the surfaces and interfaces of various media. This method is based on studying the change in the polarization state of reflected light after its interaction with the surface of interfaces of these media. Crude oil and seawater from different regions of Caspian Sea were accessed by spectroscopic ellipsometry over the 200–1700 nm spectral range at room-temperature. Optical constants and dielectric function were obtained for massive samples of each substance, as well as for ultrathin layers of the oil spilled over the sea surface. Dielectric function, when completely determined in the frequency regions corresponding to electronic transitions and excitation of atomic or molecular vibrations in the object, is a unique dielectric fingerprint of this object. Oils with even miserable difference in type and concentration of biomarkers and heterocomponents will have different dielectric functions. The possibility to use dielectric function as a unique optical fingerprint for oil identification is figured out.

    PACS: 64.70.pm
    You currently do not have access to the full text article.

    Recommend the journal to your library today!