Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Statistical characteristics and transportation mode identification of individual trajectories

    https://doi.org/10.1142/S0217979220500927Cited by:4 (Source: Crossref)

    Entering big data era, individual GPS trajectory data have created great opportunities for human mobility and collective behavior studies. Individual GPS trajectories can be collected by location-based services on mobile phones. However, GPS data often do not record transportation modes (e.g., walking, riding a bus, or driving a car). In this study, we analyzed the statistical characteristics of individual trajectories and present a collaborative isolation forest (Co-IF) model to identify the transportation modes of mobile phone GPS trajectories. Unlike previous models that identify multiple transportation modes simultaneously, the proposed Co-IF model builds a single-class classifier for each transportation mode and then combines their results. Compared to the existing models, the Co-IF model offers competitive performance and shows improved reliability with noisy trajectories.

    PACS: 05.90.+m, 89.40.+k
    You currently do not have access to the full text article.

    Recommend the journal to your library today!