World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Lévy noise-induced inverse stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons

    https://doi.org/10.1142/S0217979220501854Cited by:8 (Source: Crossref)

    This paper primarily investigates the inverse stochastic resonance (ISR) of neuron network driven by Lévy noise with electrical autapse and chemical autapse, respectively. Firstly, the discharge of Hodgkin–Huxley (HH) neuron network under different noise parameters, autapse parameters and network coupling strength is shown. Then, the variation of average firing rate with Lévy noise in the case of electrical autapse and chemical autapse is presented. We find that there exists a minimum value of the average firing rate curve caused by stability index and noise intensity of Lévy noise across the whole network, which is the phenomenon of ISR. With the increase of autaptic intensity and coupling strength, the ISR inhibitory effect of neuron discharge is weakened. In addition, with the increase of coupling strength, the neuron discharge of neural network is more intense and regular. As a consequence, our work suggests that autaptic intensity and coupling efficient of neuronal network can regulate the neuronal firing activities and suppress the effect of ISR, and Lévy noise can induce ISR phenomenon in Newman–Watts neuronal network.

    PACS: 05.40.-a, 02.50.-r
    You currently do not have access to the full text article.

    Recommend the journal to your library today!