Enhancement of thermophysical coefficients in nanofluids: A simulation study
Abstract
Molten salts constitute one kind of PCMs (Phase Change Materials) widely used in concentrating solar power facilities for heat storage and heat transfer. This paper aims to simulate nanofluid PCMs with molecular dynamics method. Concretely, the thermophysical properties of a nanofluid of KNO3 doped with SiO2 nanoparticle are investigated by equilibrium and nonequilibrium molecular dynamics simulations. For the first time, these properties of a nanofluid in the family of PCMs are calculated. The density, thermal expansion coefficient, specific heat capacity, thermal conductivity, and viscosity are characterized as functions of the SiO2 nanoparticle concentration. The effect of the SiO2 nanoparticle size on the nanofluid’s properties is also investigated. The simulation results present an enhancement of the thermophysical properties, especially for the specific heat capacity, in good agreement with the existing experimental results on a representative nanofluid PCM, and open prospects for the understanding of microscopic mechanism leading to such enhancements.
This article contains supporting information available on the journal website.
You currently do not have access to the full text article. |
---|