Numerical analysis of time-dependent stagnation point flow of Oldroyd-B fluid subject to modified Fourier’s law
Abstract
This paper aims to investigate the time-dependent stagnation point flow of an Oldroyd-B fluid subjected to the modified Fourier law. The flow into a vertically stretched cylinder at the stagnation point is discussed. The heat flux model of a non-Fourier is intended for the transfer of thermal energy in fluid flow. The study is carried out on the surface heating source, namely the surface temperature. The developed nonlinear partial differential equation for regulating fluid flow and heat transport is transformed via appropriate similarity variables into a nonlinear ordinary differential equation. The development and analysis of convergent series solutions were considered for velocity and temperature. Prandtl number numerical values are computed and investigated. This study’s findings are compared to the previous findings. By making use of the bvp4c Matlab method, numerical solutions are obtained. Besides, high buoyancy parameter values are found to increase the fluid velocity for the stimulating approach. By improving the thermal relaxation time parameter values, heat transfer in the fluid flow decreases. The temperature field effects are displayed graphically.
You currently do not have access to the full text article. |
---|