World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Variational principle of the one-dimensional convection–dispersion equation with fractal derivatives

    https://doi.org/10.1142/S0217979221501952Cited by:1 (Source: Crossref)

    The convection–dispersion equation has always been a classic equation for studying pollutant migration models. There are certain deviations in scientific research because of the existence of the impurity of the medium and the nonsmooth boundary. In this paper, we introduced the one-dimensional convection–dispersion equation with fractal derivatives in fractal space, and established the fractal variational formula of the equation through the semi-inverse method. The fractal variational formula we have obtained can provide the conservation laws in an energy form in the fractal space and possible solution structures of the given equation. An analytical solution is obtained through the two-scale transform method and Laplace transform.

    PACS: 02.30.Xx, 02.60.−x, 02.70.Wz
    You currently do not have access to the full text article.

    Recommend the journal to your library today!