World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Indentation of piezoelectric micro- and nanostructures

    https://doi.org/10.1142/S0217979222400355Cited by:1 (Source: Crossref)
    This article is part of the issue:

    This study is focused on obtaining a comprehensive understanding of the influence of geometry — size and shape — on the indentation response of a large set of piezoelectric small-volume structures such as nanoislands, nanowires and thin films. Using three-dimensional finite element modeling, the complex interplay between the properties of the indented materials and the indentation response of piezoelectric micro- and nanostructures is analyzed. It is demonstrated that: (i) In general, the indentation response of thin film structures tends to be much stiffer than that of the piezoelectric nanoisland and nanowires, resulting in more charges being generated during the indentation of the thin-film structures. (ii) The indentation of the piezoelectric nanowire structures with a spherical indenter whose radius is substantially larger than the width of the nanowires, introduces a combination of deformation modes — structural bulging and indentation-induced compression. The combined effect of two deformation modes produces a maximum in the charges generated during the indentation process on a nanowire structure with a particular aspect ratio (i.e., wire width/wire height), which is greater than that produced in nanoisland and thin films structures with the same characteristic size.

    PACS: 77.84.Dy, 77.65.Ly, 46.70.Lk
    You currently do not have access to the full text article.

    Recommend the journal to your library today!