Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Evaluation of the structural, electronic, optical, and mechanical properties of Sb2Se3 using density functional theory

    https://doi.org/10.1142/S0217979223502235Cited by:1 (Source: Crossref)

    This work investigates the effect of band structure, optical spectra, computed elastic coefficients, Bulk-to-Shear modulus ratio, Young’s modulus and Poisson’s ratio in metal selenide compounds and their influence on electronic, optical, and elastic properties of bulk crystals using density functional theory (DFT). By studying the structural and geometrical parameters, we show that the V–VI group compound has a direct bandgap of 0.887eV and the band structure can be explained by a partial density of states (PDOS) plot. By using Pugh’s formation, the bulk-to-shear ratio can be significant in precisely determining the ductility of a material. Poisson’s ratio can provide information to examine whether the lattice crystal is ionic or covalent. Our elastic data show that the orthorhombic system is found to be unstable. The optical spectra (high absorption coefficient of 1.78×105cm1, dielectric coefficient of 8.61 and reflective index of 2.93) of our current work would be beneficial to explore the applications of optoelectronic devices, especially in light-harvesting materials, covering the UV region. Our findings advance the knowledge of the structural, electronic, optical, vibrational, and mechanical properties of Sb2Se3, the key to their use, and explained the potential applications in photovoltaics perspectives.

    PACS: 71.20.-b, 71.15.Mb, 71.20.Be
    You currently do not have access to the full text article.

    Recommend the journal to your library today!