World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217979223502491Cited by:5 (Source: Crossref)

The model presented in this paper deals with the investigation of the unsteady laminar flow past a stretchable disk. The nanofluids Al2O3/H2O and Cu/H2O are considered for the analysis where the thermal characteristics and flow behavior of these nanofluids are compared. In addition, the system is subjected to the suction force that has significant impacts on velocity of the nanofluid flow. Further, the nanoparticle solid volume fraction is another important parameter that is discussed which has a prominent role on both profiles of the nanofluid. Furthermore, the investigated mathematical model is framed using PDEs that are transformed to ODEs using suitable transformations. The system of equations obtained in this regard is solved by employing the RKF-45 numerical method where the results are obtained in the form of graphs. Various nanofluids flow parameters arise in the study and the impact of all these parameters has been analyzed and interpreted. Some of the major outcomes are that the higher values of nanoparticle solid volume fraction enhance the temperature while it decreases velocity of the flow. The comparison of flow of the two nanofluids concluded that alumina–water nanofluid has a better velocity while the copper–water nanofluid has a better thermal conductivity.

PACS: 02.30.Jr, 02.30.Hq, 44.25.+f, 44.10.+i
You currently do not have access to the full text article.

Recommend the journal to your library today!