World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217979224502217Cited by:1 (Source: Crossref)

This paper enchases the performance of the inertial drag on the Buongirino model nanofluid flow past a curved stretching surface embedding within a permeable medium. The radiating heat transport property for the interaction linear approach of Rosseland thermal radiation vis-à-vis reacting species enriches the flow behavior. Further, this study is novel due to the consideration of convective boundary conditions for both the energy and solutal bounding surface condition in association with the slip velocity condition. In a practical situation, when the fluid and surface temperature are different, it is wise not to neglect the convective boundary conditions. The application of convective conditions is useful for the fabrication of the final product in the manufacturing processes. Further, the renovation of the proposed model is obtained for the suitable assumption of the similarity transformation. Traditional numerical technique, i.e., fourth-order shooting-based Runge–Kutta is the best choice for the solution of the set of the transformed equation for the assumed parameters within their specified range. Velocity contour for different parameters vis-à-vis the parametric behavior is presented graphically. Numerical validation as well as the statistical testing for the rate coefficients are the novel approaches of this study. However, interesting outcomes are deployed as follows: The enhanced Brownian and thermophoresis both encourage the fluid temperature, whereas thermophoresis decelerates the fluid concentration.

PACS: 05.70.−a, 05.40.Jc, 44.40.+a
You currently do not have access to the full text article.

Recommend the journal to your library today!