World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A stretching cylindrical carreau nanofluid border layer movement with motile microorganisms and variable thermal characteristics

    https://doi.org/10.1142/S0217979224502230Cited by:15 (Source: Crossref)

    This work investigates a non-Newtonian MHD Carreau nanofluid over a stretched vertical cylinder of an incompressible boundary layer with mobile microorganisms. The flow exists in permeable media and follows the modified Darcy’s law. An unchanged normal magnetic strength to the walls saturates the system. Ohmic dissipation, heat source, modified chemical reaction with activation energy properties, heat, volumetric nanoparticles fraction as well as microorganism profiles are covered. Thermal conductivity and mass diffusivity are taken as functions of heat and nanoparticle concentration, correspondingly. The fundamental governing system of nonlinear partial differential equations (PDEs) is converted into nonlinear ordinary differential equations (ODEs) by employing appropriate similarity transforms. The latter system is numerically analyzed through fourth-order Runge–Kutta (RK-4) simultaneously with the shooting process. The numerical outcomes showed that the curvature coefficient, magnetism and chemically activated energy perform a significant role in the velocity, heat, nanoparticle and chemical organism distributions. The impacts of several physical restrictions are tested and portrayed in a group of graphs. It is observed that the presence of microbes and nanoparticles, which are described in buoyancy terms, causes the flow to decay and slow down. By lowering the buoyancy and bio-convection characteristics, this infection can be prevented. With the development of all heat-related elements, heat transfer is enhanced, which is a significant feature associated with the current flow. These insights are important and useful in various physical and engineering fields.

    PACS: 47.11.−j, 47.56.+r, 47.65.−d, 47.55.pb, 47.63.Gd
    You currently do not have access to the full text article.

    Recommend the journal to your library today!