Unsteady Magnetohydrodynamics (MHD) mixed convection flow over a cone with the effect of chemical reaction and viscous dissipation
Abstract
This paper investigates the Magnetohydrodynamics (MHD) convective flow over a cone with the influence of viscous dissipation, variable viscosity, chemical reaction and variable thermal conductivity effects. Related equations are tackled by the Homotopy analysis method (HAM). The impacts of physical variables on concentration, velocity and temperature are presented through numerical tables and graphs. It is noticed that the heat transfer rate (Nusselt number) increases against Prandtl number. Similarly, the mass transfer rate (Sherwood number) increases against Schmidt number. Also, it is seen that skin friction in tangential and azimuthal direction increases against the buoyancy forces ratio parameter. Current results are validated with previous literature work.
You currently do not have access to the full text article. |
---|