World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A FIELD THEORY FOR THE READ OPERATOR

    https://doi.org/10.1142/S0217979296000337Cited by:33 (Source: Crossref)

    We introduce a new field theory for studying quantum Hall systems. The quantum field is a modified version of the bosonic operator introduced by Read. In contrast to Read's original work we do not work in the lowest Landau level alone, and this leads to a much simpler formalism. We identify an appropriate canonical conjugate field, and write a Hamiltonian that governs the exact dynamics of our bosonic field operators. We describe a Lagrangian formalism, derive the equations of motion for the fields and present a family of mean-field solutions. Finally, we show that these mean field solutions are precisely the Laughlin states. We do not, in this work, address the treatment of fluctuations.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!