INHOMOGENEOUS d-WAVE SUPERCONDUCTIVITY AND ANTIFERROMAGNETISM IN A TWO-DIMENSIONAL EXTENDED HUBBARD MODEL WITH NEAREST-NEIGHBOR ATTRACTIVE INTERACTION
Abstract
To understand the interplay of d-wave superconductivity and antiferromagnetism, we consider a two-dimensional extended Hubbard model with nearest neighbor attractive interaction. The Hamiltonian is solved in the mean field approximation on a finite lattice. In the impurity-free case, the minimum energy solutions show phase separation as predicted previously based on free energy argument. The phase separation tendency implies that the system can be easily rendered inhomogeneous by a small external perturbation. Explicit solutions of a model including weak impurity potentials are indeed inhomogeneous in the spin-density-wave and d-wave pairing order parameters. Relevance of the results to the inhomogeneous cuprate superconductors is discussed.