World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SYMMETRY AND COUPLING EFFICIENCY OF THE DEFECT MODES IN TWO-DIMENSIONAL PHONONIC CRYSTALS

    https://doi.org/10.1142/S0217984907013754Cited by:8 (Source: Crossref)

    We study theoretically the symmetric property and coupling efficiency of the defect modes in a two-dimensional phononic crystal by calculating band structures, field distributions and transmission coefficients of the defect modes. The results show that the point defect could act as a microcavity surrounded by the phononic crystal, and the confining ability of the phononic crystal to the resonant modes strongly depends on the thickness of the phononic crystal. By investigating the transmission spectra, we also find that the defect modes cannot be absolutely excited by the normally incident plane waves. The transmission coefficients are calculated by using the eigen-mode match theory method under the supercell technique, which is applied to the phononic crystals with the defects for the first time.