World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FORCED SYNCHRONIZATION OF EUKARYOTIC CELLS

    https://doi.org/10.1142/S0217984907014395Cited by:3 (Source: Crossref)

    A comprehensive mathematical model of the budding yeast cell cycle, accounting for several dozen published experiments, has thirty five variables and one hundred and forty parameters.5 Detailed models describing cell cycle regulation in other organisms have also a large number of variables and parameters. Complexity rises further upon integrating the cell cycle network to other pathways in the cell. For some practical and theoretical issues, abundant complexity in realistic models can be tackled by studying first a functional subset of a model to understand the mechanism of a concerned process, and then by revealing the conditions of its occurrence in a detailed model. Here we review this approach applied to the problem of cell synchronization. Using analytic results obtained from a minimal model, we simulate cell synchronization in comprehensive mathematical models for budding and fission yeast cell cycles. Our results demonstrate that an experimental method based on periodic forcing of the synthesis of cell cycle regulators can be a powerful tool for cell synchronization.