UNCONVENTIONAL BOSE–EINSTEIN CONDENSATIONS BEYOND THE "NO-NODE" THEOREM
Abstract
Feynman's "no-node" theorem states that the conventional many-body ground state wavefunctions of bosons in the coordinate representation are positive definite. This implies that time-reversal symmetry cannot be spontaneously broken. In this article, we review our progress in studying a class of new states of unconventional Bose–Einstein condensations beyond this paradigm. These states can either be the long-lived metastable states of ultracold bosons in high orbital bands in optical lattices as a result of the "orbital Hund's rule" interaction, or the ground states of spinful bosons with spin-orbit coupling linearly dependent on momentum. In both cases, Feynman's argument does not apply. The resultant many-body wavefunctions are complex-valued and thus break time-reversal symmetry spontaneously. Exotic phenomena in these states include the Bose–Einstein condensation at nonzero momentum, the ordering of orbital angular momentum moments, the half-quantum vortex, and the spin texture of skyrmions.