World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Applications of Fluid MechanicsNo Access

THE TRANSIENT DEFORMATION OF RED BLOOD CELLS IN SHEAR FLOW

    https://doi.org/10.1142/S0217984909018862Cited by:3 (Source: Crossref)

    The transient deformation of red blood cells (RBCs) in a shear flow is studied by a three-dimensional numerical model proposed by the present authors. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to be the same to the fluid outside. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the present results show that the cells carry out a swinging motion, in which periodic inclination-oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion.