World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFECT OF COPPER OXIDE ON THE GRAIN GROWTH AND INITIAL PERMEABILITY OF MgCuZn FERRITES

    https://doi.org/10.1142/S0217984910022214Cited by:1 (Source: Crossref)

    The microstructure and magnetic properties of MgCuZn ferrites prepared by using solid-state reaction method have been investigated. X-ray diffraction (XRD), a scanning electron microscope (SEM), impedance analyzer and a vibrating sample magnetometer (VSM) were utilized in order to study the effect of copper substitution and its impact on the crystal structure, grain size, microstructure and magnetic properties of the MgCuZn ferrite. The formation of cubic spinel phase was identified using XRD technique. The microstructures of the samples show that the grain growth is greatly enhanced by the addition of CuO which is attributed to the liquid phase during sintering. The average grain size (Dm) increases significantly with increasing Cu content. The initial permeability (μ') of the samples increases appreciably with increasing Cu content which is attributed to the increase of grain size and density of the samples. The resonance frequency (fr) of the samples shifts toward the lower frequency as the Cu content increases. The sharp fall of μ' in μ'-T curves is observed for all the samples which indicate the homogeneity of the samples. The saturation magnetization (Ms) of the MgCuZn ferrites increases slightly with increasing Cu concentration.