Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXACT TRAVELING WAVE SOLUTIONS OF A HIGHER-DIMENSIONAL NONLINEAR EVOLUTION EQUATION

    https://doi.org/10.1142/S0217984910023062Cited by:43 (Source: Crossref)

    The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh–coth method is implemented to obtain single soliton solutions whereas the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.