World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NEW ANALYTICAL MODEL FOR HEAT TRANSFER IN POOL BOILING

    https://doi.org/10.1142/S0217984910023256Cited by:32 (Source: Crossref)

    In this paper, dependence of active nucleation site density on boiling surfaces are developed. For pool boiling heat transfer, a mathematical model is derived based on statistical treatment using the probability density function of the cavity mouth radius and existing correlation for active nucleation site density, the volume of single bubble at departure, the bubble departure diameter and the bubble departure frequency. The proposed model is expressed as a function of wall superheat, the contact angle, maximum and minimum active cavities, and physical properties of fluid. It is shown that the wall heat flux can be determined by the consideration of the variation of the cavity mouth radius. A good agreement between the proposed model predictions and experimental data is found for different contact angles. It also turns out that the present model explains well the mechanism on how wettability affects the pool boiling.

    PACS: 05.70.Fh, 44.35.+c, 64.70.Fx