World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MODELING MULTILAYER ANTIREFLECTION COATING SYSTEMS BASED ON LiNbO3

    https://doi.org/10.1142/S0217984910023281Cited by:1 (Source: Crossref)

    Antireflection coatings have had the greatest impact on optics. The antireflection (AR) coating is the critically important technology in obtaining high performance of optoelectronic devices. In the present paper, characteristics of the ferroelectric based multilayered antireflection coating systems are investigated. Multilayer antireflection coatings consisting of insulator thin films have been modeled in the region between the 400 nm and 800 nm visible bands of electromagnetic spectrum to reduce reflectance from ferroelectric based substrate.

    In this type of antireflection coating we can regulate the optical properties of a system by external electric (or thermal field) and design a broadband low reflection coating system for optoelectronic devices. In order to design and simulate the normal incidence wideband visible multilayer AR coatings, we have developed a Fortran software program based upon Fresnell equations. Different types of layers which are two-different materials like ZnSe and ZrO2 for even-folded multilayer (two-, four-, six-, eight-, ten-, and twelve-layer) antireflection coatings are used. Ferroelectric material, LiNbO3 is used as the substrate. The optical thicknesses of each layer are equal to a quarter-wave thick at a certain wavelength.