World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CALCULATION OF THEORETICAL ISOTROPIC COMPTON PROFILE FOR MANY PARTICLE SYSTEMS

    https://doi.org/10.1142/S0217984910023396Cited by:1 (Source: Crossref)

    Theoretical isotropic (spherically symmetric) Compton profiles (ICP) have been calculated for many particle systems' He, Li, Be and B atoms in their ground states. Our calculations were performed using Roothan–Hartree–Fock (RHF) wave function, HF wave function of Thakkar and re-optimized HF wave function of Clementi–Roetti, taking into account the impulse approximation. The theoretical analysis included a decomposition of the various intra and inter shells and their contributions in the total ICP. A high momentum region of up to 4 a.u. was investigated and a non-negligible tail was observed in all ICP curves. The existence of a high momentum tail was mainly due to the electron–electron interaction. The ICP for the He atom has been compared with the available experimental data and it is found that the ICP values agree very well with them. A few low order radial momentum expectation values 〈pn〉 and the total energy for these atomic systems have also been calculated and compared with their counterparts' wave functions.