World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SYNTHESIS AND CHARACTERIZATION OF SPHERE-LIKE ZnS NANOCRYSTALS BY THERMOLYSIS OF A NEW COMPLEX PRECURSOR

    https://doi.org/10.1142/S0217984910024456Cited by:3 (Source: Crossref)

    In this paper, the preparation and optical properties of sphere-like ZnS nanocrystals are reported. Pure and uniform cubic-phase sphere-like ZnS nanocrystals with grain sizes of 30–40 nm were synthesized by thermolysis of a new precursor complex (enH2)0.5[Zn(en)3](SCN)3 (en = ethylenediamine) in nitrogen stream at 800°C. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The XRD analysis reveals the phase of ZnS with cubic zinc blende. UV-Vis and photoluminescence spectra (PL) were utilized to investigate the optical properties of sphere-like ZnS nanocrystals. By testing on UV-Vis spectra, it is concluded that the limiting wavelength of the ZnS nanocrystals is 320 nm and the band gap is 3.88 eV. In room temperature PL spectra, one strong emission peak centered at 322 nm is discovered, which could be attributed to the band to band transitions. The above-mentioned results showed that the thermolysis method is preferable for synthesizing high-quality sphere-like ZnS nanocrystals. The synthesized precursor could be used as morphological templates to prepare nanostructure inorganic compounds.

    PACS: 81.05.Dz, 81.07.Bc, 81.10.Dn