THE EFFECTS OF CO-DOPING OF B AND N ON THE ELECTRONIC TRANSPORT OF SINGLE-WALLED CARBON NANOTUBES
Abstract
Based on first-principle calculation, the geometry and electronic transport properties of the boron and nitrogen co-doping single-walled carbon nanotubes are investigated by using density functional theory combined with non-equilibrium Green's functions. The results show that the BN atoms energetically tend to form covalent bond of BN along axis in the nanotubes. In contrast to solely B or N doping, the co-doping do not generate accepter or donor subbands near the Fermi level. The co-doping give rise to the reduction of band gap in semiconducting (10, 0) tube and, furthermore, introduces the band gap to the metallic (5, 5) tube.