World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SURFACE LOCALIZATION OF ELECTRONS IN ULTRATHIN CRYSTALLINE STRUCTURES

    https://doi.org/10.1142/S0217984914500237Cited by:5 (Source: Crossref)

    Electron subsystem of ultrathin films was analyzed using Green's function method including quantum size effect and effect of boundaries on Hamiltonian parameters. We have calculated basic physical properties of electrons in crystalline films: energy spectra, possible states, space distribution of electrons and the position of Fermi level, which enabled the complete insight into the thermodynamic or conducting characteristics of observed film-structure. The comparison with crystal bulk have shown that electronic properties of the materials are strongly influenced by both the sample dimensions and boundary conditions. The numerical calculations performed for very thin crystalline metallic-like films show that localized states and spatial distribution of the (quasi)free electrons might be manipulated by varying the surface parameters which is significant for operation of devices based on thin films.