World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Low-temperature thermal conductance in three-dimensional nanowire embedded with phonon cavity

    https://doi.org/10.1142/S0217984914501930Cited by:0 (Source: Crossref)

    In this paper, we investigate low-temperature thermal conductance in three-dimensional nanowire embedded with phonon cavity based on the full scalar model of elasticity. The results show that at very low temperatures, the cavity can enhance the thermal conductance in certain lateral-width range, just as the constructive coupling of more phonon-modes excited in the cavity with modes in the transport region. At higher temperatures, however, the scattering of more interfaces formed from the cavity become a dominant factor to suppress the phonon transmission. Moreover, it is found that while the material in the cavity is substituted for the material with higher sound velocity than that in the transport region, the thermal conductance is also enhanced.

    PACS: 63.22.-m, 73.23.Ad, 44.10.+i