Proximity effect enhancement induced by a superconducting anti-dot
Abstract
In this work, we study the proximity and pinning effects of a rectangular superconducting anti-dot on the magnetization curve of a mesoscopic sample. We solve the nonlinear time-dependent Ginzburg–Landau equations for a superconducting rectangle in the presence of a magnetic field applied perpendicular to its surface. The pinning effects are determined by the number of vortices into the anti-dot. We calculate the order parameter, vorticity, magnetization and critical fields as a function of the external magnetic field. We found that the size and nature of the anti-dot strongly affect the magnetization of the sample. The results are discussed in framework of pinning and proximity effects in mesoscopic systems.