World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The local structure of skutterudites: A view from inside the unit cell

    https://doi.org/10.1142/S0217984916300015Cited by:12 (Source: Crossref)

    The skutterudites form a large class of compounds with many unusual properties, attributed in part to the novel crystal structure. The unit cell is cubic and is composed of eight sub-cubes formed by transition metal atoms. Six of the sub-cubes contain rings of atoms; the other two sub-cubes can be empty but are usually filled with rare earth or alkali earth atoms. These “filler” atoms can vibrate at low energies and hence are called “rattler” atoms. Here, the dynamics of various atom pairs are reviewed with a focus on the rattler atoms. Most of the work is based on extended X-ray absorption fine structure (EXAFS) studies but results obtained using other techniques, such as inelastic scattering experiments or atomic displacement parameters in diffraction, are also included. Although the main framework of the unit cell is often considered quite stiff, the stiffest springs in the system are only factors of 3–5 larger than the springs connecting the rattler to its neighbors. In addition, the environment about the atoms in the ring structures (e.g. Sb4 in CeFe4Sb12) has a low symmetry and our recent EXAFS experiments suggest that the rings can be considered to be quasi-rigid units, and treated as a large atom. The restoring forces on the rings are asymmetric, with large forces perpendicular to the ring and weak forces in the direction toward a rattler. This suggests that some low energy modes that have been observed in these systems may be a correlated motion of the rattler atoms and the rings. In addition, the unusual result that the second neighbor effective spring constants are stiffer than the nearest neighbor bonds has been observed for several oxy-skutterudites. A simple one-dimensional (1D) model, of a chain of rattlers and rings, weakly coupled to the rest of the lattice has been developed which can explain these unusual results. These calculations also indicate that the thermal conductivity might be further suppressed using a composite formed of several types of nanoparticles rather than just multiple filling on the rattler sites.