World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Tunable and switchable resonance in optically-controlled nested metamaterials at terahertz frequencies

    https://doi.org/10.1142/S0217984916500111Cited by:0 (Source: Crossref)

    The asymmetrical nested metamaterial, composed of two split-ring resonators (SRRs) and two embedded gallium arsenide (GaAs) islands placed in the two SRRs, has been elaborately designed on quartz substrate. Its tunable and switchable resonances at terahertz (THz) frequencies are numerically demonstrated here based on different conductivities of GaAs, which can be transformed from semiconductor to metallic state through appropriate optical excitation. Without photoexcitation, our designed metamaterial has three resonance peaks in the range of monitored frequency range, and they are located at 0.813, 1.269 and 1.722 THz, respectively. As the conductivity of the two GaAs islands increases, different new resonances appear and constantly strengthen. Finally, four new resonant points are generated, at 0.432, 0.948, 1.578 and 1.875 THz, respectively. At the same time, the metamaterial structure is changed from the original nested mode to a new integral mode. Applying reversible changing conductivity of semiconductor to push the conversion of resonance, this asymmetrical nested design provides a new instance in application and development of additional THz devices.

    PACS: 81.05.Xj, 46.40.Ef, 42.25.Bs, 78.20.-e