Nonlinear dynamic analysis of periodic ferroresonance based on a novel hysteresis approach
Abstract
Ferroresonance is one of the most harmful and longest known power quality disturbances in the history of AC power systems. The ability of predicting transient and steady-state ferroresonance simulations mainly depends on the accuracy of the power transformer model. Most existing voltage transformer models apply single-valued nonlinear functions to represent the core nonlinearities. This study, based on our previous work, proposes a newly improved and accurate transformer iron core hysteresis model for ferroresonance simulation by extension of the classical arctangent model. To verify the proposed model’s accuracy and superiority, three different ferroresonant voltage and current waveform simulations were performed using both the proposed model and renowned EMTP Type-96 model under the same system parameters. In addition, simulation results were compared with the corresponding experimental measurements. The results indicate that the proposed model is easily implemented using numerical modeling method with good stability and convergence, and is sufficiently accurate for both transient and steady-state periodic ferroresonance analysis.