Stochastic resonance and stability for an ecological vegetation growth system driven by colored noises and multiplicative signal
Abstract
In this paper, we investigate the steady-state properties and the transition rate for an ecological vegetation growth system induced by the terms of the colored multiplicative and additive noises. Numerical results indicate that the multiplicative noise and the additive one can reduce the stability of the ecological system and slow down the development velocity of the vegetation, while two noise self-correlation times can increase the stability of the system and speed up the expansion process of the vegetation system. With respect to the stochastic resonance (SR) phenomenon caused by noise terms and a multiplicative weak periodic signal, the results show that the additive noise always enhances the SR effect, two noise self-correlation time terms can produce SR phenomenon, but play opposite roles in enhancing or inhibiting the SR effect under different parameter conditions. In particular, the two self-correlation times can keep up the maximum of the signal-to-noise ratio (SNR) invariant in specific situations. Analogously, the multiplicative noise can not only improve the SNR, but also restrain the SR phenomenon in different cases.