World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Stochastic resonance in a time-delayed tumor cell growth system driven by additive and multiplicative noises

    https://doi.org/10.1142/S0217984918502597Cited by:7 (Source: Crossref)

    In this paper, the stochastic resonance (SR) phenomenon in a time-delayed tumor cell growth system subjected to a multiplicative periodic signal, the multiplicative and additive noise is investigated. By applying the small time-delay method and two-state theory, the expressions of the mean first-passage time (MFPT) and signal-to-noise ratio (SNR) are obtained, then, the impacts of time delay, noise intensities and system parameters on the MFPT and SNR are discussed. Simulation results show that the multiplicative and additive noise always weaken the SR effect; while time delay plays a key role in motivating the SR phenomenon when noise intensities take a small value, it will restrain SR phenomenon when noise intensities take a large value; the cycle radiation amplitude always plays a positive role in stimulating the SR phenomenon, while, system parameters play different roles in motivating or suppressing SR under the different conditions of noise intensities.