Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An integrated framework for anomaly detection in big data of medical wireless sensors

    https://doi.org/10.1142/S0217984918502834Cited by:11 (Source: Crossref)

    Wireless sensor networks (WSNs) are ubiquitous nowadays and have applications in variety of domains such as machine surveillance, precision agriculture, intelligent buildings, healthcare etc. Detection of anomalous activities in such domains has always been a subject undergoing intense study. As the sensor networks are generating tons of data every second, it becomes a challenging task to detect anomalous events accurately from this large amount of data. Most of the existing techniques for anomaly detection are not scalable to big data. Also, sometimes accuracy might get compromised while dealing with such a large amount of data. To address these issues in this paper, a unified framework for anomaly detection in big sensor data has been proposed. The proposed framework is based on data compression and Hadoop MapReduce-based parallel fuzzy clustering. The clusters are further refined for better classification accuracy. The modules of the proposed framework are compared with various existing state-of-art algorithms. For experimental analysis, real sensor data of ICU patients has been taken from the physionet library. It is revealed from the comparative analysis that the proposed framework is more time efficient and shows better classification accuracy.