World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Velocity–temperature correlations in high-temperature supersonic turbulent channel flows for two gas models

    https://doi.org/10.1142/S0217984919502476Cited by:1 (Source: Crossref)

    Velocity–temperature correlations in a high-temperature supersonic turbulent channel flows, including thermally perfect gas (TPG) and calorically perfect gas (CPG), are investigated based on the direct numerical simulation database [Chen et al., J. Turbul. 19 (2018) 365] to study the gas model effects. The results show that in fully developed turbulent channel flow, the Reynolds analogy factor remains close to 1.2 for both gas models. The “recovery enthalpy” is better than Walz’s equation to connect the mean stream-wise velocity with mean static temperature because it is independent with gas models. The modified strong Reynolds analogy for TPG is more accurate scaling than that for CPG, and the turbulent Prandtl number is insensitive to gas models. In addition, the influence of gas model on the probability density functions of stream-wise velocity and static temperature concentrate on the corresponding right tails.