World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NAND/AND/NOT logic gates response in series of mesoscopic quantum rings

    https://doi.org/10.1142/S0217984919504311Cited by:3 (Source: Crossref)

    There is a special class of logic gates, called universal gates, any one of which is sufficient to express any desired computation. The NAND gate is truly global, given that it is already known, each Boolean function can be represented in a circuit that contains only NOT and AND gates, it is sufficient to show that these gates can be defined from the NAND gate. The effect of Rashba spin-orbit interaction (SOI) on the gate response and spin current density in a series of non-interacting one-dimensional rings connected to some leads is studied theoretically within the waveguide theory. The gates response and spin current density are computed in geometry of the system containing two terminal double quantum rings. Also, the presence and absence of Rashba SOI are treated as the two inputs of the AND/NAND/NOT gates. Furthermore, simulation of the device performance demonstrates that vital improvement toward spintronic applications can be achieved by optimizing device parameters such as magnetic flux and Rashba coefficient.