World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Neural network-based hardware classifier using CORDIC algorithm

    https://doi.org/10.1142/S0217984920501614Cited by:2 (Source: Crossref)

    This paper designs a novel classification hardware framework based on neural network (NN). It utilizes COordinate Rotation DIgital Computer (CORDIC) algorithm to implement the activation function of NNs. The training was performed through software using an error back-propagation algorithm (EBPA) implemented in C++, then the final weights were loaded to the implemented hardware framework to perform classification. The hardware framework is developed in Xilinx 9.2i environment using VHDL as programming languages. Classification tests are performed on benchmark datasets obtained from UCI machine learning data repository. The results are compared with competitive classification approaches by considering the same datasets. Extensive analysis reveals that the proposed hardware framework provides more efficient results as compared to the existing classifiers.