Periodicity and bifurcation of a bouncing ball system with rigidly connected harmonic limiters
Abstract
The bouncing ball system with two rigidly connected harmonic limiters is revisited in order to further analyze its periodic movement and bifurcation dynamics. By using the impulsive impact maps, we obtain several sufficient conditions for the existence and local stability of three different types of periodic orbits, respectively, and then plot the bifurcation diagrams in the space of the relative velocity and the restitution coefficient for different parameters of the limiter. The numerical simulation results are consistent with those of the theoretical analysis.