World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Theoretical research on the effects of third-order dispersion on multi-pulse signal propagation based on Runge–Kutta algorithm

    https://doi.org/10.1142/S0217984921502341Cited by:1 (Source: Crossref)

    In recent years, integrated signal processing system has been attracting increasing attention for its significant potential in future data transmission and information interaction. There is a key technical requirement for multi-pulse signal propagation that keeps the waveform shape, which contributes to the practical value of the system. Here, we investigate the effects of third-order dispersion on pulses in mid-infrared multi-pulse signal propagation via numerical simulation based on Runge–Kutta algorithm. The phenomenon of waveform distortion and reduction of conversion efficiency induced by third-order dispersion is explored and discussed in detail. To reduce the impact of nonlinear factors, we propose an on-chip signal processing system based on a lithium niobate waveguide, which achieves high-efficiency signal transmission. It opens a new way to establish a novel transmission system to process multi-pulse signal.