Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Continuous-time quantum hash function based on one-dimensional cycle lattice

    https://doi.org/10.1142/S0217984921502419Cited by:4 (Source: Crossref)

    The proposed quantum hash function (QHF) based on the discrete-time quantum walk (DTQW) structure requires enlarging the coin state space and the preparation of continuous quantum states is less difficult. Hence, a new construction method of QHF is proposed based on the continuous-time quantum walk (CTQW) of the one-dimensional (1D) lattice with boundary constraints and without additional coin space. In the scheme, the input of the QHF is an arbitrary binary string message which is used to control the selected Hamiltonian of CTQW at each time interval, and the output of the QHF is the final probability distribution of CTQW. Under the same computing environment, simulation and analysis indicate that our QHF can satisfy the same security requirements such as sensitivity, diffusion and confusion, collision, birthday attack, but the collision rate is reduced by 40% without reducing effectiveness.