World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Chaotification model based on sine and cosecant functions for enhancing chaos

    https://doi.org/10.1142/S0217984921502584Cited by:4 (Source: Crossref)

    Chaotic maps with higher chaotic complexity are urgently needed in many application scenarios. This paper proposes a chaotification model based on sine and cosecant functions (CMSC) to improve the dynamic properties of existing chaotic maps. CMSC can generate a new map with higher chaotic complexity by using the existing one-dimensional (1D) chaotic map as a seed map. To discuss the performance of CMSC, the chaos properties of CMSC are analyzed based on the mathematical definition of the Lyapunov exponent (LE). Then, three new maps are generated by applying three classical 1D chaotic maps to CMSC respectively, and the dynamic behaviors of the new maps are analyzed in terms of fixed point, bifurcation diagram, sample entropy (SE), etc. The results of the analysis demonstrate that the new maps have a larger chaotic region and excellent chaotic characteristics.